ABUSIVE HEAD INJURIES IN INFANTS AND YOUNG CHILDREN
Mary E. Case, MD
St. Louis University Medical Center, Forensic Pathology, 3556 Caroline, St. Louis, MO 63104, USA

Abstract
Abusive head injuries are among the most common causes of serious and lethal injuries in children. These injuries may result from impact or shaking or a combination of these mechanisms. These mechanisms cause the child’s head to undergo acceleration-deceleration movements which may create inertial movement of the brain within the cranial compartment. Differential movement between the brain and skull may result in subdural and subarachnoid hemorrhages and traumatic diffuse axonal injury. This paper will discuss the unique anatomical and developmental features of the immature brain, skull, and neck which render young children particularly vulnerable to shearing injuries, the pathology of those injuries, and the mechanisms of these injuries.

Key words: Abusive head injury, subdural hemorrhage, retinal hemorrhages

INTRODUCTION
Abusive head injury describes the traumatic brain injury inflicted on an infant or young child. In the recent past such descriptions as “shaken baby syndrome” and “shaken-impact” have been used to describe the assumed mechanisms of injury. Abusive head injury will be used in this chapter to encompass all mechanisms of inflicted traumatic brain injury. Investigation into whether an injury is intentional or unintentional is complicated by the false histories or lack of any history that may be provided by a caregiver to explain a child’s injury. The pathological findings may assist in determination of how the injury was caused.

Physical abuse is the leading cause of death in children. 26 Ten percent of all injuries of children under age 2 years are abusive injuries. Forty to 50% of all abusive injuries are head injuries and as many as 80% of fatal abusive injuries are head injuries. Of children under 2 years old, 80% of head injury deaths are abusive. 6 Abusive head injuries are seen in children up to age 4 or 5 years although most occur in infants under 1 year old. Of children with inflicted head injury, up to 30% die, 30 to 50% have severe neurological deficits, and 30% have a chance of full recovery. 5,9,24

UNIQUE FEATURES OF THE IMMATURE BRAIN AND SKULL
Head injuries in young children are unique because the trauma affects an organ that is in the process of maturing and developing. The mechanisms, thresholds, and types of injuries which affect the young child's head differ from those occurring later in childhood and adult ages.
The young brain is enclosed in a thin and pliable skull. The bone is not ossified, the sutures are unfused, and the fontanelles are open. The brain attains 75% of its full weight by age two years and almost its entire adult weight by age 5 to 6 years making the head proportionately much larger and heavier than later in life. The weight of the newborn child's head is about 10 to 15% of its body weight compared to 2 to 3% for the adult head. The large brain of the young child has a relatively large subarachnoid space which is also very shallow in depth with the brain closely positioned next to the skull. The young child’s neck musculature is immature and unable to fully support the weight of the head.

At birth, myelination is just beginning in the cerebral hemispheres although it is fairly well developed in the spinal cord and brain stem. Myelination in the cerebral hemispheres progresses over the first 2 years of life and the early myelin sheath is thin and immature. Glial cells, synaptic connections, and dendritic connections are also minimal at birth and develop progressively over the first years of life. At birth, the water content of the brain is much greater than it is at any later time resulting in a soft, easily deformed brain.

MECHANISMS OF INJURIES

Biomechanical studies of traumatic brain injury have demonstrated that forces that result in translational movement of the brain in a straight line in relation to its center of gravity have minimal effect on the brain except for those resulting from focal contact. Contact forces may result in scalp bruises, skull fractures, epidural hemorrhage, and focal subdural hemorrhage. In rare incidences of trivial home falls from short distances, contact forces may produce a fatal head injury in a young child by producing a space occupying lesion from an epidural hemorrhage or subdural hemorrhage. In these rare cases, the child is not immediately concussed but gradually becomes symptomatic of increasing intracranial pressure. Surgical or medical intervention may prevent a fatal outcome by removal of the hematoma but some cases do have a fatal outcome.

In contrast to translational events, much more commonly serious or fatal head injury in young children is related to events that cause rotational movement of the brain about its center of gravity. Rotation of the brain’s center of gravity is caused by acceleration - deceleration movement of the head which may be initiated by either impact or non-impact mechanisms. The majority of cases of abusive head trauma are related to direct impact to the head causing forceful angular acceleration deceleration of the head. Shaking is a nonimpact inertial mechanism which may also produce angular acceleration - deceleration of the head. Acceleration - deceleration movement of the head is damaging when it is forceful enough to cause rotational movement of the brain within the cranial cavity causing the brain to turn abruptly on its axis. Rotational movement of the brain within the confines of the skull creates shearing of the vascular adnexae on the surface of the brain as well as the axonal processes within the brain.

The unique features of the young child’s brain and skull make young children particularly vulnerable to diffuse or shearing injuries of the brain. Impact to the immature brain is more likely to produce shearing injury rather than brain contusions. The lack of myelination and the small axonal size predisposes the young brain to shearing injury. The soft consistency of the brain and the pliability of
the bone facilitate brain deformation on head impact. When deformation exceeds the elastic threshold of the brain parenchyma, shearing injury occurs. The large heavy head supported on the weak neck allows greater movements of the head and brain in response to acceleration-deceleration forces. 13,14,28

In 1972, Caffey described whiplash shaking as a mechanism of injury in young children causing a syndrome consisting of subdural and subarachnoid hemorrhages, retinal hemorrhages, and metaphyseal fractures.7,8 Within the forensic pathology community in the United States, there is disagreement on the theory of whether shaking generates enough force to seriously or fatally injure a young child through rotational acceleration - deceleration. In 1987, Duhaime et al published a study in which they measured the angular acceleration of the head of a doll model resulting from either shaking or impact. Shaking alone did not reach the thresholds for concussion, subdural hemorrhage, or diffuse axonal injury. 13 The thresholds for concussion, subdural hemorrhage and diffuse axonal injury, however, had been derived from studies on adult primates which do not necessarily truly resemble the immature human infant skull and brain.16 This study demonstrated that impacts even against soft padded surfaces markedly increase the angular acceleration and exceed the thresholds for concussion, subdural hemorrhage and diffuse axonal injury. On impact, it is the sudden angular deceleration experienced by the brain and vascular adnexae, not the specific contact forces applied to the surface of the head, that result in the intracranial injury.12

A current model for the study of inertial brain injuries utilizes a miniature pig to model the effects of rotational acceleration on a human infant. The brain of a young pig closely resembles a 3 to 4 month old human infant brain. These studies have demonstrated that the young pig’s brain is more vulnerable to rotational acceleration than the adult whereas the data from the primate model had suggested the infant would be less vulnerable.36,37 This newer data thus indicates that the thresholds for concussion, subdural hemorrhage, and DAI used in the 1987 Duhaime study were not appropriate for human infants.

Absence of a bruise on the scalp or subgaleal hemorrhage does not necessarily indicate there has not been an impact. Many impacts are not reflected on the scalp because a young child's scalp is very elastic and may stretch on impact. It is not necessary to distinguish abusive head injuries as to either impact or shaking injuries because the brain pathology is identical in both.13 If there are focal injuries such as skull fractures, scalp bruises, or subgaleal hemorrhage, certainly impact can be assumed. In the absence of such marks of impact however, shaking alone should not be presumed as there may well have been impact that can not be discerned.18

PATHOLOGY OF ABUSIVE HEAD INJURIES

The pathology of abusive head injuries consists of subdural hemorrhage, subarachnoid hemorrhage, retinal hemorrhages, and diffuse axonal injury. Subdural hemorrhage results from tearing of the bridging veins which pass from the cortical surface to the dural venous sinuses. Bridging veins tear as they are over stretched as the brain moves within in the cranial cavity.15,40,43 Subdural hemorrhage is evident in up to 90% of cases of abusive head injury in children at autopsy.13,19 The subdural hemorrhage is most commonly a thin film of blood over the cerebral convexities. It may be unilateral or bilateral although there is a tendency to be bilateral. Figure 1 The subdural blood tends to extend
into the posterior interhemispheric fissure and is usually located on both sides of the falx.45 On CT scan, small amounts of interhemispheric subdural blood can be detected which may be missed at autopsy because of its location but CT is less sensitive than autopsy in detecting small convexity subdural hemorrhages.27 MRI may detect subdural hemorrhage along the falx or tentorium which may not visible on CT. The amount of subdural hemorrhage in some cases is as much as 100 ml or more but most frequently is much less. Subdural blood is a marker of shearing injury. Because the dura is firmly attached to the skull and the arachnoid is firmly attached to the cerebral cortex, most brain motion occurs across the potential subdural space and the bridging veins are vulnerable to tearing with sudden head motion. Subdural hemorrhage is not necessarily significant as a space occupying mass lesion producing increased intracranial pressure. The presence of even a small amount of subdural blood indicates that brain rotation has been produced and such rotation may have caused some amount of diffuse axonal injury.

Subarachnoid hemorrhage usually accompanies subdural hemorrhage and occurs in patches especially over the parasagittal cerebral convexities although it may be very sparse and difficult to observe because the subarachnoid blood may be present on the mesial surfaces between the cerebral hemispheres. Figure 2 Bridging veins are enwrapped by an arachnoid sheath so that a tear of the vein also causes subarachnoid hemorrhage.

Retinal hemorrhages are found in 70-85% of abusive head injuries. The mechanism which causes these hemorrhages is not precisely understood but their presence correlates highly with acceleration - deceleration head injury and they are greatly over represented in cases of abusive head trauma in young children. Mechanisms which may account for retinal hemorrhages include increased pressure transmitted to the central retinal vein from increased intrathoracic or intracranial pressure, direct trauma to the retina from being struck by the vitreous moving within the eye, and traction upon the retina by the movement of the vitreous pulling away from the retina. The retinal hemorrhages seen in abusive head injuries are similar to the retinal hemorrhages which frequently occur in full-term neonates after vaginal delivery.4,31, Ophthalmological findings in children with abusive head injury include numerous hemorrhages throughout all layers of the retina which extend far into the periphery of the retina.29, 30 Figure 3 There may be additional internal eye injuries in these same children consisting of vitreous bleeding and retinal folds. In children with very severe accidental traumatic head injuries, an occasional instance of retinal hemorrhage is found. Nontraumatic causes of retinal hemorrhages include bleeding disorders, sepsis, meningitis, vasculopathies, increased intracranial pressure, and very rarely if ever cardiopulmonary resuscitation.17,21,25,41,42 Nontraumatic causes of retinal hemorrhage do not result in the multiplicity and peripheral distribution of the hemorrhages associated with abusive head injury. Retinal hemorrhages are not seen on CT or MRI unless they are very severe.14 Retinal hemorrhages caused by increased intracranial pressure consist of small numbers of hemorrhages at the posterior pole of the retina around the optic nerve head.

Diffuse axonal injury consists of tears of axonal processes and small blood vessels and rarely actual tissue tears in certain areas of the brain.2,3 The areas of predilection for axonal injury are the corpus callosum, subcortical white matter, periventricular areas, and the dorsolateral quadrants of the rostral brainstem. Axonal tears are very difficult to see in young children because of the small size of the axonal processes. Immunohistochemical staining for β amyloid precursor protein has enabled demonstration of axonal damage in some cases of abusive head injury as early as 2 hours after injury.20,38
The blood vessel tears of diffuse axonal injury usually appear as streak or punctate hemorrhages which vary from less than 1 mm up to many centimeters in patients who survive for several days. Blood vessels in young children are very elastic and do not tear readily even when adjacent axonal processes are torn so that streak and punctate hemorrhages are very seldom found as gross evidence of diffuse axonal injury in young children.

Tissue tears are rare lesions found on gross examination of the brain, usually in children under the age of 5 months. Lindenberg described these lesions as contusion tears. They appear as small tears which occur at the cortex-white matter junction or within the layers of the cortex and are due to the differential movement of the brain as some portions of the brain shear or slip apart as the brain rotates. Contusion tears are difficult to see and in those cases in which they are found, they are accompanied by the usual findings of subarachnoid and subdural hemorrhage and do not constitute an isolated lesion by which shearing injury can be identified without the other features.

It is not always possible to establish the existence of diffuse axonal injury in young children by demonstrating the classic pathological changes of retraction bulbs, tissue tears or intraparenchymal hemorrhages although all these findings are demonstrated in some cases. Appreciation of subdural/subarachnoid and retinal hemorrhages as “markers” of possible rotational acceleration – deceleration forces is helpful in trying to discern the mechanism of injury in abusive injuries.

Abusive head injuries are frequently accompanied by brain swelling of various degrees. Initial CT scans may demonstrate brain swelling and decreased ventricular size without other lesions being visible. The swelling is probably related both to direct injury to the axonal processes causing localized edema as well as generalized swelling caused by changes in vascular permeability and autoregulation.

Diffuse brain injuries become symptomatic immediately if there is a moderate to severe degree of diffuse axonal injury as would be expected in cases with significant neurological outcome or death. The symptoms demonstrated by these severely injured children consist of an immediate decrease in the level of consciousness, either lethargy or unconsciousness followed by respiratory irregularity, difficulty, or apnea, and frequently seizures. A child with such a decrease in the level of consciousness would appear limp, unresponsive, would not eat, and would be recognizably abnormal even to a medically untrained person.
REFERENCES


ILLUSTRATIONS

Figure 1. Thin film of subdural blood over cerebral convexitities

Figure 2. Patches of subarachnoid hemorrhage over cerebral convexities

Figure 3. Multiple retinal hemorrhages throughout retina